Partial EBG Structure with DeCap for Ultra - wideband Suppression of Simultaneous Switching Noise in a High - Speed System
نویسندگان
چکیده
© 2010 Jong Hwa Kwon et al. 265 To supply a power distribution network with stable power in a high-speed mixed mode system, simultaneous switching noise caused at the multilayer PCB and package structures needs to be sufficiently suppressed. The uniplanar compact electromagnetic bandgap (UC-EBG) structure is well known as a promising solution to suppress the power noise and isolate noise-sensitive analog/RF circuits from a noisy digital circuit. However, a typical UCEBG structure has several severe problems, such as a limitation in the stop band’s lower cutoff frequency and signal quality degradation. To make up for the defects of a conventional EBG structure, a partially located EBG structure with decoupling capacitors is proposed in this paper as a means of both suppressing the power noise propagation and minimizing the effects of the perforated reference plane on the signal quality. The proposed structure is validated and investigated through simulation and measurement in both frequency and time domains.
منابع مشابه
Complementary Spiral Resonators for Ultrawideband Suppression of Simultaneous Switching Noise in High-Speed Circuits
In this paper, a novel concept for ultra-wideband simultaneous switching noise (SSN) mitigation in high-speed printed circuit boards (PCBs) is proposed. Using complementary spiral resonators (CSRs) etched on only a single layer of the power plane and cascaded co-centrically around the noise port, ultra-wideband SSN suppression by 30 dB is achieved in a frequency span ranging from 340MHz to beyo...
متن کاملA New Ultra-Wideband Low Noise Amplifier With Continuous Gain Control
This paper presents a new variable gain low noise amplifier (VG-LNA) for ultra-wideband (UWB) applications. The proposed VG-LNA uses a common-source (CS) with a shunt-shunt active feedback as an input stage to realize input matching and partial noise cancelling. An output stage consists of a gain-boosted CS cascode and a gain control circuit that moves the high resonant frequency to higher freq...
متن کاملApplication of VSI-EBG Structure to High-Speed Differential Signals for Wideband Suppression of Common-Mode Noise
© 2013 Myunghoi Kim et al. 827 In this paper, we present wideband common-mode (CM) noise suppression using a vertical stepped impedance electromagnetic bandgap (VSI-EBG) structure for high-speed differential signals in multilayer printed circuit boards. This technique is an original design that enables us to apply the VSI-EBG structure to differential signals without sacrificing the differentia...
متن کاملA Compact and Multi-Stack Electromagnetic Bandgap Structure for Gigahertz Noise Suppression in Multilayer Printed Circuit Boards
In modern printed electronics, the performances of a circuit and a device are severely deteriorated by the electromagnetic noise in the gigahertz (GHz) frequency range, such as the simultaneous switching noise and ground bounce noise. A compact and multi-stack electromagnetic bandgap (CMS-EBG) structure is proposed to suppress the electromagnetic noise over the GHz frequency range with a short ...
متن کاملA High Gain and Forward Body Biastwo-stage Ultra-wideband Low Noise Amplifier with Inductive Feedback in 180 nm CMOS Process
This paper presents a two-stage low-noise ultra-wideband amplifier to obtain high and smooth gain in 180nm CMOS Technology. The proposed structure has two common source stages with inductive feedback. First stage is designed about 3GHz frequency and second stage is designed about 8GHz. In simulation, symmetric inductors of TSMC 0.18um CMOS technology in ADS software is used.Simulations results ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010